
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 9, pp. 1065–1074.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 9, pp. 68–81.

LINEAR SYSTEMS

Static Feedback Design

in Linear Discrete-Time Control Systems

Based on Training Examples

V. A. Mozzhechkov

Tula State University, Tula, Russia
e-mail: v.a.moz@yandex.ru

Received November 14, 2022

Revised June 21, 2023

Accepted July 20, 2023

Abstract—The problem of static feedback design in linear discrete time-invariant control sys-
tems is considered. The desired behavior of the system is defined by a set of its output variation
laws (training examples) and by a requirement to the degree of its stability. Controller’s struc-
tural constraints are taken into account. Explicit relations are obtained and an iterative method
based on these relations is proposed to find a good initial approximation of the desired gain
matrix and to refine it sequentially. In the general case, simple-structure gain matrices are
found: in such matrices, only those components are nonzero that are necessary and sufficient to
give the system the desired properties. Some examples are provided to illustrate the method.
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1. INTRODUCTION

A considerable number of works are devoted to the design of static feedback in linear control
systems. As a rule, the desired behavior of the system is defined by requiring that the roots of its
characteristic polynomial belong to some value set or by minimizing an integral quadratic functional
that assesses the quality of transients. Accordingly, the problems under consideration are placing
the poles of the transfer function of a closed loop system (modal control) and designing a linear
quadratic controller (LQR). There exist [1] effective methods for solving them exactly provided
that all components of the state vector can be used in the controller and no explicit constraints are
imposed on the choice of gain coefficients. However, these problems turn out to be intractable in
the case of controller’s structural constraints [2, 3], particularly under the unavailability of some
state variables (e.g., when designing output feedback). In such a case, pole placement is an NP-
hard problem [2, 4] that often reduces to a nonsmooth and nonconvex optimization problem in
the space of controller’s parameters [2, 5]. Necessary and sufficient conditions for the existence
of a solution were established for this problem [6–9], but it was not possible to develop methods
for obtaining an exact solution [2, 3]. At the same time, algorithms were proposed to calculate
an approximate solution. A significant part of them involve Lyapunov functions for the design of
stabilizing controllers and the reduction of the original problem to nonlinear matrix inequalities
by repeatedly solving linear matrix inequalities (LMIs) during iterative refinement of the desired
solution [9–13]. The papers [14–16] investigated the possibility of using the LMI technique to
consider the sparse feedback design requirements that limit freedom in choosing the controller
structure. Along with the ones mentioned above, algorithms were proposed to design stabilizing
output-feedback controllers by minimizing the spectral abscissa of a closed loop system by its
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direct calculation and solving the corresponding nonlinear programming problem based on methods
that take into account the peculiarities of the design problem [2, 3]. The algorithms presented
in [8, 17, 18] involve external algebra methods to find an initial approximation of the desired output-
feedback gain matrix for the modal control problem; this approximation is then refined iteratively.
For the LQR problem with output feedback, necessary conditions for the existence of a solution
in the form of a system of nonlinear matrix equations were obtained [19, 20] and corresponding
iterative algorithms for the approximate solution of this problem were proposed [20–24]. Numerical
methods for solving the LQR problem with a sparse feedback matrix based on the LMI technique
were considered in [14–16, 25]; for the first time, such a problem was solved in [26] by reducing to
a nonlinear discrete programming problem. However, the algorithms mentioned do not ensure an
exact solution and are heuristic: their convergence was not proved rigorously.

The problem considered below essentially differs from classical static feedback design problems
as follows. The desired behavior of the system is defined by a set of its output variation laws,
acting as training examples. They can be trajectories corresponding, e.g., to a feedback control
law that should be simplified using a simpler controller in the designed system (in particular, a
system with state feedback can be a source of training examples for output feedback design) or to
a program control law or human control that should be implemented in the designed system based
on a feedback control law. Together with the closeness of the system trajectories to the trajectories
given as training examples, the requirement to ensure a given degree of its stability is considered.
In addition, the constraints imposed on the feedback structure are taken into account. They can be
expressed as the requirement to use output feedback, the requirement that some elements of the gain
matrix be zero, and the requirement to eliminate its structural redundancy. The latter is equivalent
to obtaining a simple-structure gain matrix [27–31]: in such matrices, only those components are
nonzero that are necessary and sufficient to give the system the desired properties. The goal of
design is to approximate the system behavior to the desired one by choosing the elements and
structure of the gain matrix. This problem statement is novel and has not been considered in the
works devoted to controller design, including those involving machine learning methods [32–35].

In this paper, we derive explicit relations and propose a corresponding iterative method to find
a good initial approximation of the desired gain matrix and to refine it sequentially. The novel
method allows designing all possible simple-structure gain matrices.

2. PROBLEM STATEMENT

Consider a control system described by the equations

xk+1 = Axk +Buk, (1)

yk = Cxk, (2)

uk = Kyk, (3)

where k denotes discrete time from the set of natural numbers; xk, yk, and uk are the state,
output, and control vectors, respectively; the components of the vectors xk, yk, and uk as well as
the elements of constant matrices A, B, C, and K are real numbers; the controller’s gain matrix K
has to be determined, the other matrices are supposed given.

Consider structural constraints imposed on the controller (3). They are usually re-
duced [2, 14, 15, 26] to requiring zero value for some elements of the gain matrix K = (ki,j). There-
fore, we introduce the condition

ki,j = 0, ∀(i, j) /∈ Š, (4)

where Š is the set of number pairs (i, j) for the elements of the gain matrix K that are not required
to be zero.
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We define the desired behavior of system (1)–(4) by specifying the corresponding desired trajec-
tories Yγ = (yγk ), k∈{1, N}, of the output (2) of system (1)–(4) for some set of initial conditions xγ0 ,
γ ∈ {1, q}.

In other words, we define a set

Q = {(xγ0 , Yγ)}, γ ∈ {1, q}, (5)

in which the pairs (xγ0 , Yγ) are training examples.

In system (1)–(4), perfectly matching the desired behavior, the equality y(xγ0 ,K)k = yγk holds
for the initial conditions x(0) = xγ0 at each time instant k ∈ {1, N}. Let us require this condition
for each pair (xγ0 , Yγ) ∈ Q, i.e.,

y(xγ0 ,K)k = yγk , ∀k ∈ {1, N}, ∀γ ∈ {1, q}. (6)

The possibility that (6) is satisfied approximately will be described as follows:

εγ−k ≤ y(xγ0 ,K)k − yγk ≤ εγ+k , ∀k ∈ {1, N}, ∀γ ∈ {1, q}, (7)

where εγ−k and εγ+k are given constant vectors.

Generally, conditions (7) do not ensure the stability of system (1)–(4). Therefore, together
with (7), we require the necessary degree of Schur stability for the matrix Ac = A+BKC of the
closed loop system (1)–(4), i.e.,

ρ(Ac(K)) ≤ 1− σ, (8)

where ρ(Ac(K)) denotes the spectral radius of the matrix Ac(K) and σ is a given degree of stability.

Let the matrix K be chosen through the best approximation of the behavior of system (1)–(4) to
the desired one by minimizing the Euclidean norm of the vector Δy(K) composed of the residuals
y(xγ0 ,K)k − yγk of all equations (6):

|Δy(K)| → min
K

. (9)

In the case of a given structure of the controller (a fixed set Š defining its structure), the problem
under consideration is to find the matrix K in system (1)–(4) that satisfies the requirements (7)–(9).

In general, we will solve the structural design problem: determine all sets Š and the correspond-
ing matricesK for which conditions (7)–(9) hold and the structure of the controller (3), (4) is simple.
This means [27–31] that only those components of the matrix K are nonzero that are necessary
and sufficient to give system (1)–(4) the desired properties. Formally, the problem of determining
a set Ω of simple structures of the controller (3), (4) consists in the following: find admissible
structures Š ∈ ζ for which a less complex admissible structure cannot be specified. (A structure Š′

is considered simpler than Š if Š′ ⊂ Š.) In other words, it is required to find

Ω =
{
Š ∈ ζ | {Š′ ∈ ζ | Š′ ⊂ Š} = ∅

}
, (10)

where ζ denotes the set of admissible structures, i.e., those for which there exists a matrix K
satisfying conditions (1)–(4) and (7)–(9). The formula {Š′ ∈ ζ | Š′ ⊂ Š} = ∅ indicates the absence
of an admissible structure Š′ simpler than a structure Š ∈ Ω.
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3. ANALYSIS OF THE PROBLEM

Given xγ0 and K, the solution of system (1)–(3) can be written [1, p. 20] as follows:

y(xγ0 ,K)k = CAkxγ0 + C
k−1∑
i=0

Ak−i−1BKy(xγ0 ,K)i, ∀k ∈ {1, N}. (11)

In view of (11), condition (6) is equivalent to the system of equations

CAkxγ0 + C
k−1∑
i=0

Ak−i−1BKy(xγ0 ,K)i = yγk , ∀k ∈ {1, N}, ∀γ ∈ {1, q}. (12)

Applying identity transformations yields the system

CAkxγ0 + C
k−1∑
i=0

(
y(xγ0 ,K)Ti ⊗Ak−i−1B

)
vec(K) = yγk , ∀k ∈ {1, N}, ∀γ ∈ {1, q}, (13)

where ⊗ denotes the Kronecker product [36, p. 83] and vec(·) is the vectorization function [36].
(It produces a column vector by the successive connection of all columns of the argument matrix.)
We write system (13) as

Y0γ +Gγ(K)vec(K) = Yγ , ∀γ ∈ {1, q}, (14)

where Y0γ , Yγ , and Gγ(K) are the column vectors composed of the blocks CAkxγ0 , y
γ
k , and Gkγ(K) =

C
∑k−1

i=0

(
y(xγ0 ,K)Ti ⊗Ak−i−1B

)
, respectively, k ∈ {1, N}.

From (14) and (4) it follows that

Gγ(K)Svec(K)S = Ŷγ , ∀γ ∈ {1, q}, (15)

where the matrix Gγ(K)S and the vector vec(K)S contain the columns of the matrix Gγ(K) and
the coordinates of the vector vec(K), respectively, whose numbers are specified in the set S. (In
accordance with the set Š, the former set determines the numbers of the coordinates of the vector
vec(K) that are not required to be zero.) In addition, Ŷγ = Yγ − Y0γ .

Let all the desired trajectories Yγ = (yγk ), k ∈ {1, N}, γ ∈ {1, q}, belong to the set of solutions
of system (1)–(4). Then y(xγ0 ,K)i in the expressions (12), (13) can be replaced by yγi ; as a result,
the matrix Gγ(K) in (15) becomes constant and independent of the desired unknown matrix K.
In this case, system (15) can be represented as

ḠγSvec(K)S = Ŷγ , ∀γ ∈ {1, q}, (16)

where Ḡγ is the column vector of the blocks Ḡkγ = C
∑k−1

i=0

(
yγTi ⊗Ak−i−1B

)
, k ∈ {1, N}.

Proposition 1. System (1)–(4) perfectly matches the desired behavior given by the set of training
examples (5), i.e., the requirement (6) holds, if and only if all the desired trajectories Yγ , γ ∈ {1, q},
belong to the set of solutions of system (1)–(4) and the matrix K given (4) is the solution of the
system of linear equations (16).

The proof of Proposition 1 is postponed to the Appendix.

According to Proposition 1, the feasibility of system (16) is a necessary and sufficient condition
for equalities (6), i.e., a condition for the exact reproduction of all training examples by the designed
system.
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Due to the equivalence of equations (6) and (15), conditions (9) and (7) are equivalent to the
requirements

q∑
γ=1

| Gγ(K)Svec(K)S − Ŷγ |2→ min
K

, (17)

Ŷγ + ε−γ ≤ Gγ(K)Svec(K)S ≤ Ŷγ + ε+γ , γ ∈ {1, q}. (18)

Proposition 2. The behavior of system (1)–(4) best approximates the desired one specified by the
set of training examples (5), i.e., the requirements (7)–(9) hold, if and only if the matrix K given (4)
is the solution of the nonlinear least-squares problem (17) with the constraints (18) and (8).

The proof of Proposition 2 is given in the Appendix.

4. THE SOLUTION METHOD

4.1. Solution of the Problem with a Given Controller Structure

Assume that the controller has a given structure, i.e., the set Š is specified. The desired matrixK
corresponding to conditions (4) and (7)–(9) can be determined by solving problem (4), (17), (18),
(8) (see Proposition 2). It will be called the statical controller training (SCT) problem. The success
in solving this problem will significantly depend on the choice of the initial approximation (on how
close the initial values of the desired unknowns are to the solution).

The solution of system (16) is a good initial approximation in the SCT problem. In general, we
can take its approximate solution, i.e., the matrix K for which the vector vec(K)S minimizes the
Euclidean norm of the difference between the left- and right-hand sides of system (16) (the normal
pseudosolution)

vec(K)S = Ḡ+
S Ŷ , (19)

where Ḡ+
S is the Moore–Penrose pseudoinverse of the matrix of system (16) and Ŷ is the right-hand

side of system (16).

The closeness of the matrix K to the desired solution can be argued as follows. Let conditions
(7)–(8) be feasible and Ǩ be the solution of the SCT problem. If the desired trajectories belong to
the set of trajectories possible in system (1)–(4), by Proposition 1 the matrix Ǩ will coincide with
the solution of system (16), i.e., Ǩ = K. A small discrepancy between the desired and possible
trajectories leads to a small discrepancy between the matrices Ǩ and K since small changes in
the parameters of system (1)–(4) correspond to small changes in its solutions and vice versa. The
feasibility of conditions (7)–(8) means the closeness of the desired and possible trajectories in
system (1)–(4); hence, if the desired solution of the SCT problem exists, it will be close to K.
(Hereinafter, we estimate the closeness of matrices by the Frobenius norm.)

Generally speaking, the matrix K differs from the desired solution because its definition does
not fully considers conditions (7)–(9). Therefore, using it as a starting point, we will find a solution
corresponding to the entire set of requirements.

The efficiency of solving the SCT problem can be improved by taking into account its pecu-
liarities. Note that this problem turns into a linear least-squares problem with linear constraints
[37, p. 225] (hereinafter, the LSL problem) when replacing, first, Gγ(K)S in (17), (18) with a fixed
matrix Gγ(K

∗)S corresponding to the fixed matrix K∗ and, second, the function ρ(Ac(K)) in (8)
with its linear approximation near of K∗. Such a linearization procedure is acceptable when seek-
ing a solution in a small neighborhood of the matrix K∗. Therefore, it is possible to approach the
solution of the SCT problem sequentially at each search step by solving the LSL problem with the
matrix K∗ found at the previous step.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



1070 MOZZHECHKOV

The algorithm for solving the SCT problem proposed in this paper includes the following stages.

1. Choose the normal pseudosolution of system (16) as an initial approximation of the desired
vector vec(K)S .

2. Perform an iterative search for the solution. At the 0th iteration, take vec(K(0))S = vec(K)S .
(The iteration number is specified as the superscript in brackets.)

At each jth iteration, solve the LSL problem

q∑
γ=1

| G(j−1)
γ α(j) − Ŷγ |2→ min

K
, (20)

Ŷγ + ε−γ ≤ G(j−1)
γ α(j) ≤ Ŷγ + ε+γ , γ ∈ {1, q}, (21)

r
(j−1)
0 + r

(j−1)
1 α(j) ≤ 1− σ, (22)

where α(j) ≡ vec(K(j))S is the vector of unknowns, G
(j−1)
γ is the column composed of the blocks

Gkγ(K
(j−1)) = C

∑k−1
i=0

(
y
(
xγ0 ,K

(j−1)
)T
i
⊗Ak−i−1B

)
, k ∈ {1, N}, and r

(j−1)
0 + r

(j−1)
1 α(j) is the

linear approximation of the function ρ(Ac(K)) near K(j−1). Conditions (21), (22) may fail when
solving the LSL problem (20)–(22). In this case, the search procedure is stopped with stating that
the solution of the SCT problem could not be found (because it does not exist or the algorithm is
not efficient enough).

3. The search procedure is successfully completed when the vector of unknowns α∗ = α(j)

satisfying conditions (21) and (22) is obtained and either the difference |α(j) − α(j−1) | or the
objective function (20) becomes small enough, or a given number of iterations is exhausted. Take
the matrixK = vec−1

S (α∗) as the solution, where vec−1
S (·) is the inverse of the vectorization function.

(Given (4), it reconstructs the matrix K from the argument vector.)

The method presented above is substantially similar to the Gauss–Newton iterative algorithm
for solving the unconstrained nonlinear least-squares problem. At each iteration of this algorithm,
Taylor’s theorem is applied to linearize the objective function and solve the resulting linear least-
squares problem. In contrast, the novel method essentially exploits the peculiarities of problem (17),
(18), (8) and, consequently, requires no differentiation to linearize the objective function. For this
purpose, as stated above, it suffices to fix the matrix K within the next iteration. In addition,
the novel method is a constrained optimization method: it considers conditions (18) and (8)) when
solving the nonlinear least-squares problem. At each iteration of the novel method, the LSL problem
is solved, which belongs to the class of convex programming problems [38, 39]. For such problems,
the existing effective optimization procedures yield the solution or state its absence. (For example,
we mention the lsqlin function in Matlab.)

4.2. Solution of the Structural Design Problem

Assume that the controller structure is not given: the set Š is not specified in the initial problem
data and must be determined. In this case, we have the structural design problem. Within the
adopted formalization (10), it consists in finding sets Š and corresponding matrices K for which
conditions (7)–(9) hold and the structure of the controller (3), (4) is simple [27–31]. It can be solved
using the algorithm for designing general-form simple structures [31]. The procedure proposed in
subsection 4.1 may serve to assess the acceptability of the controller structure and calculate the
corresponding parameters.
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5. EXAMPLES

Example 1. Consider the model of a two-mass system [1, p. 52, p. 125]. Assume that the output
is composed of all components of the state vector except the second one. Given a time discretization
step of 0.01, unit masses, and a stiff spring linking them, we obtain the following matrices of
system (1), (2):

A =

⎛
⎜⎜⎜⎝

1 0 0.01 0

0 1 0 0.01

−0.01 0.01 1 0

0.01 −0.01 0 1

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

0

0

0.01

0

⎞
⎟⎟⎟⎠ , C =

⎛
⎜⎝ 1 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎠ .

In (3), the desired matrix K has dimensions 1× 3. All its components are allowed to be nonzero;
therefore, Š = {(1, 1) (1, 2) (1, 3)} in (4).

We define the desired behavior of system (1)–(4) as follows. Let the desired trajectories cor-
respond to the optimal control by the minimum energy criterion that transfers the system from
the initial states x10 = (−1; 1; 1;−1) and x20 = (−10; 10;−1;−1) to the origin in time k = 250. To-
gether with the initial conditions, these trajectories Y1 = (y1k), Y2 = (y2k), k ∈ {1,500}, form the
set of training examples (5) Q = {(x10, Y1), (x

2
0, Y2)}. They can be calculated using the known

dependencies [1, p. 128].

First, we solve the design problem without the constraints (7), (8) (i.e., the unconstrained opti-
mization problem of the objective function (9)). After three iterations, the novel method described
in Section 4.1 yields the gain matrix K = (−10.671 − 4.124 − 13.745). The corresponding degree
of stability is σ = 0.964 × 10−2, and the objective function takes a value of 37.25.

Example 2. To improve stability, we increase the value σ to 1.2×10−2 and reduce the amplitude
of oscillations on the final interval (for k ∈ {300, . . . , 500}), restricting the admissible deviation of
the output coordinates from the desired trajectories to the values ±0.5 and ±1.5 for x10 and x20,
respectively. (In Example 1, these deviations are 0.68 and 2.23.) Given the above requirements,
it is therefore necessary to solve the constrained optimization problem (9), (7), (8). Three itera-
tions of the novel method result in K = (−13.012 − 5.310 − 16.821); in addition, σ = 1.2 × 10−2,
conditions (7) and (8) hold, and the value of the objective function is 120.32.

Example 3. Consider the lateral motion model of an aircraft presented in [26, p. 182]. For a
time discretization step of 0.001, we obtain the following matrices of system (1):

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1000 0 1 0.044 0

−1.215 999 0.131 0 0

0.430 0.021 1000 0 0

0 1 0 1000 0

0 0 1 0 1000

⎞
⎟⎟⎟⎟⎟⎟⎠× 10−3, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0

−0.040 1.587

0.381 −0.067

0 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠× 10−3.

In equation (2), C is an identity matrix of dimensions 5× 5.

Solving for system (1)–(3) the LQR problem with the minimization criterion
∑∞

k=1 x
T
k xk, we

find the gain matrix of the controller (3)

KLQR = −
(

2.049 0.098 3.937 0.096 0.766

−0.110 1.100 −0.168 1.031 −0.642

)
.

Let the first component of the state vector be excluded from the controller’s variables for its
structural simplification. This can be done by writing condition (4) of the design problem as
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k1,1 = 0, k2,1 = 0 (equivalently, the design problem of an output feedback containing all components
of the state vector except the first one). Accordingly, the set Š in (4) is given and includes all number
pairs of the elements of the matrix K except (1,1) and (2,1).

The set of training examples Q consists of the trajectories Yγ = (yγk ), γ ∈ {1, 5}, k ∈ {1, 104}, of
system (1)–(3) with the LQR controller (with the gain matrix K = KLQR) corresponding to initial
conditions xγ0 where the component with number γ is 1 and the others are zero. Let the components
of the vectors εγ−

k and εγ+
k in (7) be assigned by requiring that the admissible deviation of the

trajectories yγk of system (1)–(3) from the desired ones lies within ±1% of their maximum absolute
values at each time instant k. In addition, the degree of stability of the designed system must be
not smaller than that of system (1)–(3) with the LQR controller. For this purpose, σ = 4 × 10−5

is chosen in (8).

Using the novel method, we find the gain matrix

K =

(
0 6.622 −13.519 8.180 −8.181

0 −1.420 0.621 −1.414 1.001

)
.

The solution is obtained after four iterations upon satisfying the assigned constraints without
progress in decreasing the objective function.

Example 4. We modify the problem of Example 3 as follows. Let the first component of the
state vector be excluded from the output by redefining the matrix C in equation (2) as a matrix
of dimensions 4× 5 obtained by eliminating the first row from the matrix C of Example 3. In this
case, the desired matrix K has dimensions 2 × 4. We solve the structural design problem of the
system in the statement presented in subsection 4.2. The novel method yields the sets Š and the
corresponding matrices K (see the table) for which conditions (21) and (22) are satisfied and the
controller (3), (4) has a simple structure [27–31].

Table

No. Gain matrix No. Gain matrix

1

(
4.819 −10.920 5.898 −6.696
0 −1.444 0.403 −0.184

)
3

(
5.230 −11.510 6.413 −7.030
−0.318 −0.984 0 0.0786

)

2

(
6.084 −12.742 7.500 −7.736
−0.994 0 −0.867 0.644

)
4

(
5.112 −11.344 6.268 −6.936
−0.225 −1.120 0.120 0

)

6. CONCLUSIONS

This paper has proposed a novel approach to designing static feedback in linear discrete time-
invariant control systems. Within this approach, the desired behavior of the system is defined by a
set of its output variation laws (training examples). The problem statement and solution method
can be generalized to the case dynamic controllers based on the known procedure [3] for reducing
dynamic feedback design to an equivalent static feedback design.

The algorithm for solving the static controller learning problem (see subsection 4.1) is heuristic:
its convergence has been confirmed by computational experiments without rigorous proof.

APPENDIX

Proof of Statement 1. Let the matrix K be the solution of system (16). Equations (16) and (6)
are equivalent if all the desired trajectories Yγ , γ ∈ {1, q}, belong to the set of solutions of sys-
tem (1)–(4); see the considerations above. Hence, under all other hypotheses of the proposition,
choosing the matrix K based on equalities (16) ensures the requirements (6). This proves the
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sufficiency part of Proposition 1. If the matrix K is not the solution of system (16), violating
equations (16) will also violate conditions (6). If some of the desired trajectories Yγ , γ ∈ {1, q}, do
not belong to the set of solutions of system (1)–(4), the equality yk = yγk will not hold for them at
each time instant k ∈ {1, N}. Therefore, conditions (6) will fail as well. This proves the necessity
part of Proposition 1.

Proof of Statement 2. This result follows from the equivalence of conditions (1)–(4) and (7)–(9)
(on the one hand) and conditions (4), (8), (17), and (18) (on the other hand).
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